
V8. Override (Advanced)
    Every message sent by ViewIt to a control driver can be intercepted by a main program.    
This allows the program to selectively modify all aspects of control behavior.    Note that this 
"override" capability is much more powerful than the Dialog Manager's support for 
"userItem" procedures, or the Control Manager's support for "action" procedures, since 
ViewIt allows you to intercept all control messages passed to any ViewIt control.
    At one extreme, overriding can be used to tweak the behavior of an existing control (such 
as filtering key events in some program-specific manner).    At the other extreme, controls 
can be completely managed by program code ("program controls") that intercepts and 
handles all messages from ViewIt, allowing, in effect, the program to control any region of a 
ViewIt window.
    This topic describes the 3 ways that a program can override ViewIt controls:    1) content 
drawing within ViewBV controls by a main program procedure, 2) "program controls" that are
completely supported by main program code, and 3) overriding of selected messages by a 
program procedure.    These 3 options represent different degrees to which the main 
program can take responsibility for a control's appearance and behavior.

CONTENT DRAWING
    The ViewBV controls described in the "Views" topic support the use of a main program 
procedure that does the drawing of the view's content.    ViewBV can also support non-view 
controls in a ViewIt window.    The "Program Content" example control seen in the Import 
menu when in edit mode is an example of such a non-view control that is supported by 
ViewBV (try adding it to a ViewIt window).
    The "Program Content" control handles scrolling and drawing of its body and frame, but 
does not display any "content" unless it is associated with a program drawing procedure 
(described under "Content" in the "Views" topic).    The scrolling is done using ViewIt's built-
in support (described under "Scrolling" in "Controls" topic), meaning that the ScrCtl 
command can be used by a program to directly scroll and resize the content area of the 
control, and that changes to the content and increment settings in the Bounds dialog will 
apply.
    Scrollable controls based on the ViewBV driver offer a simple way to support scrolling of 
program-specific drawing.    All of the display options of views are supported:    scroll bars, 
hand scrolling, activation/deactivation with active state of window, color, frame thickness, 
attachment, etc.
    The major limits on such controls are:
- maximum 30,000-pixel height and width of content area
- the scrolling increment (set in Bounds dialog) is limited to 255 pixels and is the same in 
both directions
- the controls must be type "Static" (i.e., display only)

PROGRAM CONTROLS
    The "Program Controls" folder included with ViewIt contains the demo projects in C++, C, 
and Pascal that illustrate how to create "program controls" which are completely supported 
by main program code (i.e., areas of a window whose appearance and behavior are 
controlled by the main program).    These custom, program controls can be mixed with any 
number of other controls in the same window, and can be edited like any other control when 
in edit mode.

Example Projects
    The C++ project is in the form of a class hierarchy in which a base class, "VControl" (which
contains code that is common to most control drivers), is subclassed to create custom 
controls:    static and editable text controls.    The C and Pascal projects are in a procedural 
format which contains the same code as the C++ "VControl" base class.    In this case the 
default procedures are simply replaced to produce custom controls.



    The procedures found in the VControl file have a one-to-one correspondence to the control 
messages that are sent by ViewIt to control drivers, and each procedure in VControl includes
a complete description of what it is that ViewIt expects the procedure to do.    Additional 
information about control drivers can be found in the "Inside Drivers" window when running 
the "ctlDemo" program which makes use of VControl to support program controls.
 FORTRAN Programmers:    Although we did not provide examples of FORTRAN-based 
program controls, note that the form of the program procedures needed to support such 
controls is the same as the override procedures described below, so you can use the 
override example in the FORTRAN version of vDemoXY as the starting point for developing 
program control drivers.

Procedure Format
    Program-based controls are supported by main program procedures that do all of the 
things done by "control drivers" (first described in "Views" topic).    These procedures must 
be of type "Pascal", and have a single, 4-byte parameter.    When working within a code 
resource, this parameter is used to recover the global fRec address and other information.    
When working within a main program, however, the fRec is usually available as a global 
record and so the passed parameter can be ignored:
/* C, C++ */
 pascal void function MyDriver(Ptr thePtr);
Pascal
 procedure MyDriver(thePtr : Ptr);
where "MyDriver" is the name of the program procedure and "thePtr" is the single, 4-byte 
parameter.
    On entry, the "c" variables in fRec will contain information about the control (as if you 
called GetCtl), and the variables uCommand and uParam will contain the message being 
sent to the control by ViewIt.    A complete description of the messages sent to controls by 
ViewIt is presented in the VControl file and Inside Drivers document that are part of the 
example projects in the "Program Controls" folder.

Procedure Installation
    The address of the program procedure must be connected to the program controls in the 
window.    One way of doing this would be to use the OvrCtl command described below, but 
this would be tedious since OvrCtl would need to be called to connect each such control.
    To simplify this task, baseID "7400" has been set aside as a signal to ViewIt that any 
control with this baseID is a program control (i.e., that it is supported by a program 
procedure), and that the address of the procedure will be found in the fRec variable 
fDrvr7400.    Thus, to connect all program controls to a single procedure, simply set their 
baseID to 7400 (in the Control dialog) and fDrvr7400 to the procedure address:
 fRec.fDrvr7400 = (long)MyDriver;    /* C, C++ */
 fRec.fDrvr7400 := @MyDriver;            Pascal
Note that this assignment should be made before any window is opened that contains 
associated program controls, and that the procedure must be located in a nonrelocatable 
code resource.

SELECTIVE OVERRIDES
    Occasionally you may find that an existing control almost does what you want it to do, but 
needs to be modified in some minor way.    In this case you should selectively override one or
more of its control messages with a program override procedure (instead of creating a 
program control that must handle all messages from ViewIt).    A simple example of an 
override procedure is presented in the "vDemoXY" program, and the following notes review 
the installation, format, and operation of these procedures.

Override Format



    Override procedures must be of type "Pascal", and have a single, 4-byte parameter.    
When working in a code resource, this parameter is used to recover the global fRec address 
and other information. When working in a main program, however, the fRec is usually 
available as a global record, so the passed parameter can be ignored (although it is used in 
jumping back to the driver - discussed below):
/* C, C++ */
 pascal void function MyOverride(Ptr thePtr);
Pascal
 procedure MyOverride(thePtr : Ptr);
where "MyOverride" is the name of the override procedure and "thePtr" is the single, 4-byte 
parameter.

Override Installation
    The most direct method of associating an override procedure with a control is by passing a
control handle and a procedure address to the OvrCtl command (Pascal source):
 FaceIt(nil,GetCtl,0,0,1,5);
 FaceIt(nil,OvrCtl,ord(cControl),ord(@MyOverride)…
where, in this case, the 5th control in the 1st view is being associated with the program's 
"MyOverride" procedure.    See "vDemoXY" for an example using your preferred language 
and compiler.
    The above method of installing an override procedure has two disadvantages:    the control
must already exist in a window, and OvrCtl must be called for each control that is to be 
overridden.    These disadvantages are addressed by an alternative method based upon the 
assignment of an "Override ID" number to each override procedure.    These ID numbers are 
arbitrary 2-byte integers passed to OvrCtl in place of the control handle.    For example,
 FaceIt(nil,OvrCtl,1001,ord(@MyOverride),0,0);
would associate the override ID "1001" with "MyOverride" by storing this ID/ProcPtr pair in a 
private table.    All controls with an "Override ID" of 1001 (set in Control dialog) will then be 
associated with the program's "MyOverride" procedure.
    OvrCtl can be used to add new entries to the ID/ProcPtr table at any time, whether 
associated controls have been initialized or not.    To remove an entry, pass the ID number of 
the entry to be removed and zero for the proc address:
 FaceIt(nil,OvrCtl,1001,0,0,0);
    Since override IDs are saved with control-related resources, such controls can be added, 
pasted, imported, duplicated, etc., without losing their link to the override procedure.    If the 
override ID is zero, or is not found in the table, then ViewIt ignores it and calls the control 
driver directly.

Override Execution
    Before ViewIt sends a message to a control, it checks whether the control is linked to an 
override procedure, and, if so, then the override procedure is called instead of the control 
driver.    This means that the override procedure will see all control messages and can 
selectively override or modify any message.
    On entry, the "c" variables in fRec will contain information about the control (as if you 
called GetCtl), and the variables uCommand and uParam will contain the message being 
sent to the control by ViewIt.    A complete description of the messages sent to controls by 
ViewIt is presented in the VControl file and Inside Drivers document that are part of the 
example projects in the "Program Controls" folder.
    In most cases, you'll want to pass messages on to the control driver so that it can execute 
its default behavior (versus the "program controls" described above that must handle all 
messages).    This is done by calling the "JumpIt" procedure using the 4-byte parameter 
passed to the override procedure.    See the "vDemoXY" programs for examples of calling 
JumpIt using your preferred language and compiler.
    When passing messages on to control drivers, the override procedure must be careful to 
preserve the contents of the "c" variables in fRec, plus uCommand and uParam since these 



will be used by the driver.    This differs from the procedures that support "program controls" 
since the latter are drivers and are completely responsible for all messages.
    The actions taken by an override procedure usually fall into one of five categories:

• Posting Events
    One approach to take is to post a pseudo-menu event back to your own event loop before 
passing the message on to the driver.    This approach is relatively safe because it does not 
involve making any changes to fRec variables or executing code that might affect the 
default operation of the driver.    A pseudo-menu event can be posted using ViewIt's PstEvt:
 ...
 if [some condition] then
    begin
      BlockMove(@uCommand,@saveMessage,20);
      FaceIt(nil,PstEvt,13,b,c,d);
      BlockMove(@saveMessage,@uCommand,20);
    end;
 JumpIt(thePtr);    pass message to driver
 ...
where "saveMessage" is a 20-byte array being used to save uCommand and uParam for use 
by the driver, and passing a = 13 to PstEvt puts a new event in the private event queue 
from which pseudo-menu events are returned to the program's modal or modeless event 
loop:    b -> uMenuID, c -> uResult, and d -> uMenuItem (see the PstEvt command in the 
"Other Utilities" topic for more info).
    If the posted message is to replace the original event, then the code is even simpler:
 ...
 if [some condition] then    message to program
    FaceIt(nil,PstEvt,13,b,c,d)
 else                                            message to driver
    JumpIt(thePtr);
 ...
ViewIt's "Links" dialog, for example, supports use of the arrow keys to move up and down in 
its list of controls (versus the default behavior of moving the insertion bar within the current 
editable text item).    This trick is done by overriding all of the editable text controls with the 
same override procedure:
 procedure OverProc(thePtr:Ptr);
 ...
 if (uCommand = 264) then      a key press?
    if (uParam[1] = 30) or (uParam[1] = 31) then
      begin                                        arrow keys?
        FaceIt(nil,PstEvt,13,1200,0,uParam[1]);
        exit(OverProc);
      end;
 JumpIt(thePtr);
 ...
where the message posted is received by ViewIt from MdlWnd (uMenuID = 1200, uMenuItem
= 30 or 31) and interpreted as a request to move up or down in the list.
    uMenuID can be thought of as a message "class", uMenuItem as a message ID, and 
uResult as any accompanying data.    To avoid conflicts with other uses of uMenuID, choose a
value that is outside of the range of FCMD IDs (1100-7499), and is not equal to any label ID, 
menuID, or FWND ID (a number > 7499 is a good choice).    NOTE:    The value returned in 
uMenuItem gets temporarily stored in the 2-byte "modifiers" field of an event record, so 
don't use it to pass 4 bytes of information.    uResult, on the other hand, gets stored in the 4-
byte "where" field, so you can use this to pass addresses, handles, etc.

• Stealing Messages
    Another safe action to take is to simply steal the message and not pass it on to the driver 
(i.e., do not call "JumpIt").    This strategy works when you wish to replace the default 



response of the control with a program-specific response, or with no response at all.    
WARNING:    Only the message(s) of interest should be stolen.    Stealing other messages 
(such as a "draw" message) will disable the corresponding default behavior of the control 
(such as drawing itself!).

• Tweaking Messages
    Another safe action is to make minor changes to messages being passed to drivers.    An 
example of this can be found in "vDemoXY" where its override procedure converts all space 
characters to underline characters passed to the editable text item.

• Major Action Before
    More complex actions within override procedures that are taken before passing a message 
to a driver must be careful to preserve the fRec variables set by ViewIt for use by the driver 
(cNext to cString, uCommand, and uParam).    The "c" variables, for example, can be reset 
using GetCtl, but the "u" variables must be saved in program variables:
 ...
 BlockMove(@uCommand,@saveMessage,20);
 saveControl := cControl;
 [do stuff that clobbers fRec]
 FaceIt(nil,GetCtl,0,0,0,ord(saveControl));
 BlockMove(@saveMessage,@uCommand,20);
 JumpIt(thePtr);
 ...
where "saveMessage" is a 20-byte program array being used to save uCommand and 
uParam (the original message).

• Major Action After
    More complex actions within override procedures that are taken after passing a message 
to a driver must consider that the driver is allowed to change any "c" or "u" variables for its 
own purposes.    Again, GetCtl can be used, if necessary, to update the contents of fRec if the
control's control handle has been saved:
 ...
 saveControl := cControl;
 JumpIt(thePtr);
 FaceIt(nil,GetCtl,0,0,0,ord(saveControl));
 ...
Also note, if executing code after "JumpIt", that the fRec variables uResult and uMenuHdl are
sometimes used to return information from the driver to ViewIt, so you will need to preserve 
these for some types of messages.

Limitations
- Most ViewIt controls are very flexible.    Do not waste time attempting to override behavior 
until you fully understand a control's default capabilities.
- Messages to standard CDEF controls cannot be intercepted.
- The "initCntl" message will not be seen by an override procedure that was installed by 
passing a control handle to OvrCtl.    Any initialization-related code that you wish to add, 
however, can be executed just after the override procedure is installed.
- Controls that are reinitialized from within editing mode will lose their connection to an 
override procedure if the procedure was installed by passing a control handle to OvrCtl.
- The fRec variables ciIndex to ccIndex are not updated by ViewIt when calling control drivers
and override proc.s.    The reason for this is that it would take ViewIt too long to calculate 
these values when passing messages to windows with large numbers of controls.    If you 
need such indices for use within override proc.s, then use GetCtl with the control handle 
passed in cControl (be careful to preserve uCommand and uParam!).    A better approach, 
however, is to not rely on control or view numbers, but rather write procedures that 



understand how to deal with control types.    Controls can be easily distinguished by 
variables such as cBaseID (the driver type), cResType (linked resource type), cDataType 
(linked data type), cRefCon (a value set by you), etc.


